Entropy for expansive algebraic actions of residually finite groups

نویسنده

  • Lewis Bowen
چکیده

We prove a formula for the sofic entropy of expansive principal algebraic actions of residually finite groups, extending recent work of Deninger and Schmidt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Models and Spanning Forests of Residually Finite Groups

We prove a number of identities relating the sofic entropy of a certain class of non-expansive algebraic dynamical systems, the sofic entropy of the Wired Spanning Forest and the tree entropy of Cayley graphs of residually finite groups. We also show that homoclinic points and periodic points in harmonic models are dense under general conditions.

متن کامل

Homoclinic Groups, Ie Groups, and Expansive Algebraic Actions

We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is 1-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups...

متن کامل

Homoclinic Group, Ie Group, and Expansive Algebraic Actions

We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is 1-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups...

متن کامل

Topological Entropy and the Variational Principle for Actions of Sofic Groups

Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of a countable sofic group on a standard probability space admitting a generating partition with finite entropy. By applying an operator algebra perspective we develop a more general approach to sofic entropy which produces both measure and topological dynamical invariants. We establish the variational principle ...

متن کامل

Entropy and the Variational Principle for Actions of Sofic Groups

Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of a countable sofic group on a standard probability space admitting a generating partition with finite entropy. By applying an operator algebra perspective we develop a more general approach to sofic entropy which produces both measure and topological dynamical invariants, and we establish the variational princi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009